If it's not what You are looking for type in the equation solver your own equation and let us solve it.
250x^2-6175x+400=0
a = 250; b = -6175; c = +400;
Δ = b2-4ac
Δ = -61752-4·250·400
Δ = 37730625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37730625}=\sqrt{625*60369}=\sqrt{625}*\sqrt{60369}=25\sqrt{60369}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6175)-25\sqrt{60369}}{2*250}=\frac{6175-25\sqrt{60369}}{500} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6175)+25\sqrt{60369}}{2*250}=\frac{6175+25\sqrt{60369}}{500} $
| -18f=-19f-19 | | -b-3+9b=-3+10b | | 4x=200÷48 | | 10x−5=2x+11 | | 4-8y=-3-7y | | h/3−3=1 | | 3(n-11)=n | | 4x-2+7=12-3x | | X-0.05x=650 | | 2m+18=15 | | 32.5+6x=180 | | h/3+3=1 | | 11y−7=2y+20 | | (2x-5)°=180 | | 48×4x=200 | | h/33=1 | | 10+(h+1)-4=76 | | 8.5r+17.13=16.32+10.5r+6.01 | | 200=48×4x | | -2x+5=-32 | | q/3+5=6 | | s=2·5 | | 2x+3x+7x=42 | | 5y−3=2y+9 | | q3+ 5=6 | | -7c-7=14c-19c+15 | | 8–3k+5k=0 | | 3x+4=7(x+1)-2x | | 7f–12+f=20 | | -2h=-12-h | | 2x+-9+3=6-5x | | 16x^2+200x+1=0 |